Realize Your Product Promise®

NSYS[®]

Design Space Exploration for Signal Integrity

Overview

- Introduction to Design Space Exploration
 - Cornerstone Technology
 - DesignXplorer
- Utilizing Design Space Exploration for Signal Integrity
 - Pre-layout what-if analysis
 - Post-layout Optimization
 - Manufacture variables study(6 sigma)
- Full Hardware Utilization for Design Space Exploration
 - High Performance Computing (HPC)
 - Distributed Solve Option (DSO)
- Conclusions

2

Introduction to Design Space Exploration

- Design Space Exploration is the ability for a user to explore the design space of a structure in simulation space so that they can have a design with optimum performance and manufacturability
- Design Space Exploration is **MORE** than an optimization.
 - A simple optimization is similar to walking a foot path to a desired destination though the forest... The walker knows nothing about the surrounding area away from the path other than they 'seem' to arrived at their destination
- Design Space Exploration is the exploration of a design's performance in the whole design space. Each variable is explored so that there can be many paths to an optimum with much more insight into the sensitivities of output quantities with respect to the design variables.

Table of	able of Schematic EH: Optimization						
•	A	B	c	D	t		
1		P1 - red_signal	P2 - length_signal	P3 - anti_spacing	P4 - Return_Loss_d8_freq	PS-Return_Loss_d8_db_s_coax_coax_	
2							
3	Objective	No Objective 🔻	No Objective 🔻	No Objective 🔻	No Objective 🔻	Mininize	
4	Target Value						
5	Importance	Default 💌	Default 💌	Default 💌	Default 🔻	Higher	
6							
7	Candidate A	- 29.8	- 183.6	- 40.46	→ 12	💑 -34.66	
8	Candidate B	- 29.15	- 191.2	- 38.93	- 12	★★ -33.06	
9	Candidate C	- 28.88	- 198.2	- 36.05	- 12	× -24.7	

3

Why Using Design Space Exploration in SI?

- Electronics is hierarchy, different variable takes different role, those variables combination also displays different effect.
- Signal Integrity's goal is searching a balance design---trade off between performance and cost.

Dr. Howard Johnson: "Maximize the performance and minimize the cost of interconnection technology used in high-speed digital designs" From <u>http://www.sigcon.com</u>

ANSYS Electronics Desktop: Integrated platform for SI

Single Desktop for: HFSS Q3D HFSS 3D Layout Planar EM Circuit System

Tight integration between circuit and 3D simulation

What is DesignXplorer?

- DesignXplorer is ANSYS powerful approach to explore, understand and optimize your engineering challenges for ANSYS Multiphysics analysis solvers, including electromagnetic.
 - Determine the key parameters influencing the design
 - Explore and understand the performance at other design or operating conditions
 - Find the conditions which give the best performance
 - Explore the robustness of the design

ANS

6

DesignXplorer Features

7

Realize Your Product Promise®

ANSYS[®]

Utilizing Design Space Exploration for Signal Integrity

Pre-layout what-if analysis

Pre-layout what-if analysis

• Differential stripline study with DesignXplorer

• Optimization goals

- Characteristic Impedance: Z0 (differential) ~ 90 ohm
- Minimize Insertion loss: >-3dB
- Maximize Return Loss: <-10dB

Optimization variables

- DK=8~10
- DF=0.0013~0.0024
- Width=50~80um
- Seperation=1W~3W
- Dielectric Thickness: 50~75um
- Metal Thickness: 7~19um
- Metal Conductivity: 0.67E7~1.5E7 Siemens/m

© 2016 ANSYS, Inc.

9

Differential stripline model buildup

- Create a ANSYS Electronics Desktop project with Circuit Design in dynamic linked 2D Extractor
 - 2D Extractor design: optimize impedance
 - Circuit Design: optimize insertion loss and return loss

DesignXplorer Response Surface Optimization setup

Design of Experiments variable table generation

• Create Design of Experiments variable table

- Specify design variable range setup
- Preview the Design of Experiments variable table

File	View	Tools	Units	E	xtensia
			Proj	ect	
🥖 Up	date	2 Preview	2 Cl	ear	Genera
Toolbox	6		- 	×	Outi

NDID

2 Geometry V	ne of Schematic C2: Design of Experiments		- 4 ×	Table of O	Dutline A2: I	Design Points of Design of Expe	riments		DoF t	ahla				• ф
3 🧐 Setup 🗸	A	В			А	В	С	D	ŲUL L	anic	G	н	I	J
4 🔊 Solution 🦩		Enabled		1 1	Name 💌	P10 - \$trace_width [um] 💌	P11 - \$spacing [um]	P12 - \$TOP_Die_Thick [um]	P13 - \$Bottom_Die_Thick [um]	P14 - \$trace_thickness [um]	P15 - \$plane_thickness [um]	P16 - \$conductivity	P17 - \$etch_ratio 💌	P18 - \$DK
5 🛱 Parameters	🖻 🥖 Design of Experiments	0		2	1	21.907	9.5232	71.921	52.781	7.0649	7.1205	6.5225E+06	0.51921	9.3245
2DExtractorDesign1	Input Parameters			3	2	19.152	10.026	80.364	48.609	7.5656	6.3788	7.1615E+06	0.47616	10.212
252xd detor 5 osigini	🖃 🚟 Stripline_Differential_Created_April09003550_UTC (B:	1)		4	3	21.43	9.947	80.662	47.417	7.0464	7.6397	6.6911E+06	0.49272	9.8543
	lp P10 - \$trace_width [um]			5	4	19.735	9.7086	74.901	51.722	7.6861	6.9351	6.8775E+06	0.54437	10.901
	lp P11 - \$spacing [um]			6	5	19.232	9.1921	75	53.311	7.3152	6.5735	6.1054E+06	0.51258	10.649
	P12 - \$TOP_Die_Thick [um]	1	1	7	6	21.695	9.8543	79.669	46.755	7.2596	7.1669	7.3656E+06	0.49669	10.993
▼ B	P13 - \$Bottom_Die_Thick [um]	1		8	7	19.523	10.185	76.291	51.391	7.4821	6.6848	6.0433E+06	0.52715	10.384
1 👯 Designer Circuit	C P14 - \$trace_thickness [um]	1	1	9	8	20.265	10.013	77.682	49.801	6.5457	6.5272	6.4693E+06	0.45762	9.0728
2 👰 Setup 🗸	P15 - \$plane_thickness [um]	1		10	9	18.517	9.8808	79.768	48.808	6.351	6.6384	6.7799E+06	0.46225	9.8675
2 10 California 🥖	Cp P16 - \$conductivity			11	10	18.331	9.5629	77.185	45.298	6.5364	6.9444	6.8952E+06	0.46954	10.861
S Nor Solution	p P17- \$etch_ratio	1 DEIS	hlc	¢2	11	21.642	9.245	71.523	51.788	6.3139	6.5921	7.0372E+06	0.50861	10.464
→ 4 🖗 Parameters		au		3	12	18.305	10.954	77.881	48.013	6.7497	6.7219	7.1082E+06	0.48477	9.6291
Circuit1	(p P19-\$DF	1		14	13	18.172	10.702	69.04	48.742	7.5748	6.7868	6.7976E+06	0.51722	9.1921
	Cp P20 - diffspacing [um]	1	-	15	14	21.325	10.596	80.066	47.815	6.4252	7.4914	7.2058E+06	0.52848	10.172
	Output Parameters		H	16	15	18.781	9.8013	70.828	52.583	6.8609	7.6954	7.197E+06	0.47682	9.7086
	Gravit1 (A1)	zati	on g	goa	IIS	20.954	9.9868	81.755	48.278	7.0834	7.204	6.345E+06	0,53974	9.5497
	P4 - max(dB(S(Diff1,Diff1)))		1	18	17	19.285	9.6954	72.914	52.45	7	6.4715	6.1143E+06	0.54834	9.9073
Parameter Set	P5 - min(dB(S(Diff1,Diff2)))			19	18	20.053	9.2053	69.636	53.179	7.1762	7.6212	6.7532E+06	0.50331	9.6159
	Stripline_Differential_Created_April09003550_UTC (B:	1)	1	20	19	18.199	10.212	76.887	53.51	6.7868	7.1576	6.4604E+06	0.54702	10.874
	P9 - mag(Z0(Pair 1:df,Pair 1:df))			21	20	18.146	10.755	78.477	52.053	7.2318	6.6755	7.3034E+06	0.49536	10.702
	Charts			22	21	20.026	9.7483	78.974	52.318	6.6384	6.8053	7.2946E+06	0.4894	10.821
	Parameters Parallel			23	22	20.583	10.583	76.788	54.172	6.5179	7.0278	7.0461E+06	0.50662	9.457
	V Design Points vs Parameter			24	23	21.722	9.3775	69.238	53.576	7.0185	7.0464	6.3273E+06	0.49007	10.596
1 Surface Optimization			-	25	74	10 /11	10 690	70 170	40.010	6 667	י בבקב	6 EDDEE 106	0 54271	0 4067
2 🛄 Design of Experiments 🛛 🦩 🛓	erties of Outline A2: Design of Experiment		▼ 4 ×	× [,
3 📕 Response Surface 🔗 🖌														
4 Optimization 🦈														

12

Project Schematic

1 - O3D 2D Extract

Solve DoE table

- Once the Design of Experiments table is generated, run variable sweeping.
- DSO(Distribution Simulation Option) will distribute variables to multiple nodes to solve simultaneously.

Sensitivity and Response Surface Plots

- Creating Sensitivity and Response Surface for the Design of Experiments results
 - Sensitivity will display the 2D sensitivity histogram of each input variables vers. output(Z₀).

Optimizing over the Response Surface

• Specify the optimization objectives and constraints

- Differential Characteristic impedance of 90 ohm with lower bound 85 ohm and upper bound 95 ohm
- Maxmimum insertion loss
- Minimum Return Loss

Table o	f Schematic C4: Optimization						
	A	В	с	D	E	F	G
1	No.		Objecti	ve	Constraint		
2	- Name	Parameter	Туре	Target	Туре	Lower Bound	Upper Bound
3	Seek P9 = 90; 85 <= P9 <= 95	P9 - mag(Z0(Pair 1:df,Pair 1:df))	Seek Target	90	Lower Bound <= Values <= Upper Bound	▼ 85	95
4	Maximize P4	P4 - max(dB(S(Diff1,Diff1)))	Maximize	-	No Constraint	-	
5	Minimize P5	P5 - min(dB(S(Diff1,Diff2)))	Minimize	· 🛛	No Constraint	-	
*		Select a Parameter	1				

• The best benefit of the Response Surface approach in DesignXplorer is that the user can change the values of the cost and re-optimize with no further explicit simulations

Table of	Schematic C4	: Optimization , Candidate I	Points								
	A	В	С	D	E	F	G	н	I	J	к
1				D11 Éconcine	fermine D12		B(S(Diff1,Diff1)))	P5 - min(dB(S(D	iff1,Diff2)))	P9 - mag(Z0(Pair 1:df,Pair 1:df))
2	Reference	Name 🗾	P10 - \$trace_width [um]	[um]	\$trace_thickness [um]	Parameter Value	Variation from Reference	Parameter Value	Variation from Reference	Parameter Value	Variation from Refe
3	۲	Candidate Point 1	18.027	85.596	7. 1925	-6.3503	0.00 %	× -5.4534	0.00 %	A 90.202	0.00 %
4	Exq	olore Response Surface at P ert as Desion Point	Point	87.379	7.4801	-6.3831	-0.52 %	× -5.4322	0.39 %	A 90.055	-0.16 %
5	Ins	ert as Refinement Point		91.924	7.4799	-6,472	-1.92 %	× -5.4625	-0.17 %	<u></u>	0.44 %
Candida	Ins	ert as Verification Point			111-						
30	Ins	ert as Custom Candidate Po	bint		19		-6.2803		-3.5846		91
	🏓 Ver	fy by Design Point Update					\wedge			Ca	ndidate Point 1 🥣
	Exp	oort Data				/				Ca Ca	ndidate Point 2 ndidate Point 3

Final Optimized results

- After you verify the candidate points, ۲ choose the best one for the design
 - IL&RL:
 - Before optimization: Gray dot line
 - After optimization: Red solid line
 - Differential Character Impedance:
 - Before optimization: 49.5ohm
 - After optimization: 84.3 ohm

Simulation:

Before optimization

-

(32.851,-0.95596)

Z0:Pair1:cm

(ohm, ohm)

10 (GHz)

Setup1

View Options..

DiffPairMatrix1

Freq: 10 (GHz) Pair1:cm

Pair1:df

16

ANSYS

Realize Your Product Promise®

ANSYS[®]

Utilizing Design Space Exploration for Signal Integrity

Post-layout Optimization

Hierarchy PCIe Channel Example

PCIE Serial Channel Design Problem Scale

30 different factors are unreasonable considering an entire PCIe Channel, for example:

- Package
 - Thickness, Pad breakout, trace length, ball pitch, dielectric material (5)
- Socket
 - Thickness, material properties, SG via ratio (3)
- Board
 - MS and SL trace & space, etch factors, Cu roughness, dielectric materials, via config (8)
- Connector
 - Various vendor models, often only one or two options. (1)
- 2nd Board
 - MS, SL, etch factors, Cu roughness, dielectric materials, via config (8)
- 2nd Package
 - Thickness, Pad breakout, trace length, ball pitch, dielectric material (5)

If each factor has 4 variable value, the total combination scenario will be 120

19

Different level variables combination affect different level character

• Sweeping variables

- \$FFE/DFE level on System level (Discrete distribution)
- \$PCB_trace_length on Circuit level (Continues distribution)
- \$anti_pad on **Component** level (Continues distribution)

•	Optimization	goal:
---	--------------	-------

- **BER** for statistic analysis
- **Eye width/height** for statistic/circuit analysis(timing domain)
- **Insertion loss/Return loss** for circuit analysis(frequency domain)

<u>ه ۱</u>	Alue C Optimization	C Tuning C Sensitivity		C Statistics					
T	Name	Value	Unit	Evaluated Value	Description	Read-only	Hidden	Sweep	
	\$Package_trace_length	0.01	meter	0.01meter			Г	~	-
	\$Socket_Array_Index	0		0		Ē		~	
	\$PCB_Array_Index	0		0				~	
	\$Via_Model_Array_Index	0		0		Π		~	
	SCard trace length	0.01	meter	0.01meter				~	
- [\$FFE_TAP	2		2					
	\$PCB_Trace_Length	0.05	meter	0.05meter				~	
-	SantiPad	770	um	770um	Signal via antipad diam	Г		~	
	SGND_Via_Pad	30	mil	30mil				F	1
	\$GND_Via_Anitpad	25	mil	25mil				~	
	\$GND_Via_Drill	12	mil	12mil				~	
	\$Sig_Via_Pad	20	mil	20mil				~	
	\$Sig_Via_Antipad	10	mil	10mil				~	
	\$Sig_Via_Drill	8	mil	8mil				~	
	\$SM_Top	0.9	mil	0.9mil				~	
	SL1_THK	0.7	mil	0.7mil				 	
	\$D1_THK	4	mil	4mil				~	
	\$L2_THK	0.7	mil	0.7mil				~	
	\$D2_THK	4	mil	4mil				~	
	\$L3_THK	0.7	mil	0.7mil				~	
	\$D3_THK	4	mil	4mil				~	
	SL4_THK	0.7	mil	0.7mil				~	
	\$D4_THK	4	mil	4mil				~	
	\$L5_THK	0.7	mil	0.7mil				V	
	\$D5_THK	4	mil	4mil				~	
	SL6_THK	0.7	mil	0.7mil				V	
	\$D6_THK	4	mil	4mil				V	
	\$L7_THK	0.7	mil	0.7mil				V	
	\$D7_THK	4	mil	4mil				V	
	\$L8_THK	0.7	mil	0.7mil				~	
	\$SMB_THK	0.9	mil	0.9mil				V	
	Socket_Array	["\$PROJECTDIR\Socket\Socket_1_6_SG		["\$PROJECTDI					
_	SPCB_Array	["Diff_SL_76_Ohm_20mil_Spacing", "Diff_S		["Diff_SL_76_O					
	\$Via_Model_Array	["\$PROJECTDIR\Via_Models\Via_L14_0		["\$PROJECTDI					
	LD.	P9 - SSIg_via_Antipad [m	11						N
	Output Para	meters	-					-	
									_
_	E 🔩 Quia	ETE (B1)							
	P+	P13 - MinEyeWidth(AEYE	PROE	BE(Eye2),	1ns, Ons, Ons,	1,0mV	, 1 <mark>,</mark> Ons	s)	
	PZ	P14 - MinEyeHeight(AEYE	PRO	BE(Eye2),	1ns, Ons, Ons	,1,Om\	/, 1, On	is)	
	P	P15 - XWidthAtYVal(AEYE	PRO	BE(Eye2),	1e-012)				
		(A 1)							-

ANS

20

PCIe Channel DoE data table

Outline	of Schematic D2: Design of Experiment	s 👻 🖓	X Table o	f Schematic D2: D	esign of Experiments (▲ 廿 ×
		А		A	В	с	D	E	F	G
1			1	Name 🔻		P12 - \$Sig Via Antipad [mil]	P3 - \$PCB Trace Length [meter]	P7 - \$PCB Trace Length [meter]	P8 - SEFE TAP	P9 - \$Sin Via Antinad [mil]
2	🗉 🖌 Design of Experiments		-			12 Golg_no_noped [nin]		a ora		10.50
3	Input Parameters		2	1	0	13	0.054	0.053	0	12.52
4	🖃 🕌 QuickEYE (B1)		3	2	0	15.64	0.0536	0.071	0	13.24
5	p P1-\$FFE_TAP		4	3	0	12.76	0.0464	0.093	0	11.50
6	p P12 - \$Sig_Via_A	ntipad [mil]	5	4	0	13.24	0.0102	0.081	0	11.8
7	P3 - \$PCB_Trace	_Length [meter]	0	5	0	10.04	0.0492	0.067	0	13.4
8	🖃 🚼 LNA (A1)		7	6 DP1	0	13.48	0.05	0.051	0	14.92
9	p P7 - \$PCB_Trace	_Length [meter]	8	7	0	14.44	0.0532	0.097	0	14.2
10	P8 - \$FFE_TAP		9	8	0	15.4	0.0476	0.079	0	11.08
11	P9 - \$Sig_Via_Ar	tipad [mil]	10	9	0	15.88	0.0484	0.065	0	14.44
12	Output Parameters		11	10	0	12.04	0.0508	0.099	0	13
13	G CuickEYE (B1)		12	11	0	11.08	0.0496	0.059	0	10.36
14	P13 - MinEveWid	th(AEYEPROBE(Eve2), 1ns, 0ns, 0ns, 1, 0mV, 1, 0r	(s) 13	12	0	14.2	0.0524	0.073	0	15.88
15	P14 - MinEveHeir	ht(AEVEPROBE(Eve2) ins Ons Ons 1 Om/ 1 O	14	13	0	13.96	0.0472	0.057	0	12.04
15	PIS - Ywidthaty	Val(AEVEDDOBE(Eye2)) 1e-012)	15	14	0	15.16	0.048	0.095	0	13.96
17			16	15	0	11.8	0.0544	0.077	0	15.16
1/		(64 D)(67)))	17	16	0	10.12	0.0528	0.085	0	12.28
18	p4 P10 - min(dB(S(L	IIT1,DIT2)))	18	17	0	14.68	0.0512	0.061	0	10.6
19	E Charts	Simnii	10	\mathbf{A}	/ari	ania r	rompir	ration	0	10.84
20	Parameters Parallel							rativii	0	11.32
21	Design Points vs Pa	rameter	21	20	0	10.6	0.052	0.063	0	12.76
			22	21	0	10.36	0.0468	0.087	0	13.48
			23	200	n g i	11°ne +/	0.0504	0.083	0	10.12
			24		<u> </u>	1UJ U	0488	0.089	0	15.64
•	T	1	25	24	0	11.56	0.046	0.055	0	13.72
Proper	ies of Outline A7: P3 - \$PCB_Trace_Ler	gth [meter] 👻 🎙	× 26	25	0	13.72	0.0452	0.075	0	14.68
	A	В	27	26	1	13	0.054	0.053	0	12.52
1	Property	Value	28	27	1	15.64	0.0536	0.071	0	13.24
2	E General	Tube .	29	28	1	12.76	0.0464	0.093	0	11.56
3	Component ID	Design of Experiment	30	29	1	13.24	0.0548	0.081	0	11.8
4	Directory Name	RSO	31	30	1	10.84	0.0492	0.067	0	15.4
5	Units	100	32	31 DP 2	1	13.48	0.05	0.051	0	14.92
6	Type	Design Variable	33	32	1	14.44	0.0532	0.097	0	14.2
7	Classification	Continuous	▼1 34	33	1	15.4	0.0476	0.079	0	11.08
8	Notes	Continuous	35	34	1	15.88	0.0484	0.065	0	14.44
9	Notes		36	35	1	12.04	0.0508	0.099	0	13
10	Values		37	36	1	11.08	0.0496	0.059	0	10.36
11	Value	0.05	38	37	1	14.2	0.0524	0.073	0	15.88
12	Lower Bound	0.045	39	38	1	13.96	11.08 2	0.057	0	12.04
13	Upper Bound	0.055	40	39	1	15.16	0.048	0.095	0	13.96
14	Use Manufacturable Values		41	40	1	11.8	0.0544	0.077	0	15.16
			42	41	1	10.12	0.0528	0.085	0	12.28
			43	42	1	14.68	0.0512	0.061	0	10.6
			44	43	1	14.92	0.0516	0.091	0	10.84
			45	44	1	11.32	0.0456	0.069	0	11.32
			46	45	1	10.6	0.052	0.063	0	12.76
			47	46	1	10.36	0.0468	0.087	0	13.48
					5m					

ANSYS[®]

Show Progress Abow 2059 Messages

PCIe Channel Example – View the swept output

ANSYS[®]

© 2016 ANSYS, Inc.

Response Surfaces

- Visualize response surfaces in 3D or 2D plots (continuous, discreet, mixed) variables
- The Measure of fit provides a metric for evaluating the accuracy of the response surface model.
- 3D: Eye Width vs. PCB tracelength& antipad size /Eye Width vs. FFE& Antipad size

Sensitivity Plots

Sensitivity histogram shows that **\$Trace_length** is the most sensitive parameter for **Eye_width**

Realize Your Product Promise®

ANSYS®

Utilizing Design Space Exploration for Signal Integrity

Manufacture tolerance study (6 σ -six sigma)

DesignXplorer for PCB manufacture tolerance study example

- Differential stripline study with DesignXplorer
 - 6σ analysis will be done based on user defined variable range and distribution

Manufacture variables

- DK=8~10

© 2016 ANSYS, Inc.

- DF=0.0013~0.0024
- Width=50~80um
- Seperation=1W~3W
- Dielectric Thickness: 50~75um
- Metal Thickness: 7~19um
- Metal Conductivity: 0.67E7~1.5E7
 Siemens/m

All variables are Normal (Gaussian) distribution

6σ Analysis

27

6σ Analysis results

• 6σ analysis will give statically distribution function and relative sensitivity curve.

The mean value was 48.79 ohm, peak value was 51.31ohm(min) and 68.47ohm(max)

Probability density distribution Rela

Relative Sensitivity results

28

Realize Your Product Promise®

ANSYS[®]

Full Hardware Utilization for Design Space Exploration

HPC: High Performance Computing

- HPC enables increased productivity and higher fidelity simulation including more geometric detail and larger systems.
- HPC helps you make your product development process, more productive and efficient.
- Faster turnaround and larger models all mean better designs in less time.

30

How to Enable HPC Pool License ?

• Tools > Options > HPC and Analysis Options

Enable HPC

Pool

• Design Type:

- Specify more than 1 cores
- Options Tab
 - HPC License Pool

	HPC	= F	aster
HPC and Analysis Options		×	Analysis Configuration Configuration name: Local The local and interactive job configurations Use Automatic Settings Machines [Options] Machines for Distributed Analysis Total Enabled Cores: 8 Name Cores RAM Limit (%) Enabled Remove Move up Move up Move down Total Enabled Cores: 40
Queue all simulations Design type: HFSS 3D Layout Design Name Distributed Memory MPI Vendor Remote Spawn Command	Value Platform Computing SSH		Name Cores RAM Limit (%) Enabled Remove \\sjocomput 20 90 Image: Cores Move up \\sjocomput 20 90 Image: Cores Move up Move down Test Machines Test Machines
HPC Licensing HPC License Enable GPU Description: This setting specifies if HPC license will be used and wh Batchoption name: "HFSS 3D Layout Design/HPCLicen	Pool False ich type of HPC license to use. rse Type" Type: String, Allowed Values: "Pool", "Pack	", "None".	Machine Details: C Local machine C IP Address format: 192.168.1.2): DNS Name (format: www.server.com): UNC Name (format: \\server): UNC Name (format: \\server): Machine form File Add Machine to List
1	OK	Cancel	OK Cancel

Apple had 1536 tasks EM HPC workgroup license

31

DSO: Distributed Solve Option

Distributed Solve Option

- Enables multiple *parametric variations* to be solved simultaneously on local and/or networked cores
- Each variable will utilize same HPC setting, which offers a near-linear speed-up with the number simultaneous variations (DSO tasks)
- Key for accelerating robust design (design of experiments, six sigma, etc.)

How to Enable DSO License ?

- Tools > Options > HPC and Analysis Options
 - HFSS, HFSS-IE and HFSS 3Dlayout:
 - DSO is enable if check *Use automatic settings*

Analysis Configuration

- Q2D/Q3D, Maxwell, Circuit and Simplorer:
 - In *Job Distribution* tab, checking **Optimetrics** Variations to enable DSO

Q2D/Q3D, Maxwell, Circuit, Simplorer Enable DSO

Apple had 211 tasks DSO license

Software and License requirements

• Software Requirements

- ANSYS Electronic Desktop 2016.2 (ANSYS EM Suite 17.2)
- ANSYS Workbench 17.2 with Pre/Post
- Integrated ANSYS Electronic Desktop with Workbench

• License

- ANSYS HFSS with SI options
- Optimetrics
- HPC
- DSO
- ANSYS DesignXplorer

Conclusion

- ANSYS provides unified platform for Signal Integrity Design Space Exploration, which covers pre-layout, post-layout simulation and manufacture tolerance study.
- DesignXplorer gives easy way to automatically set up SI for Design Space exploration and Optimization
- HPC and DSO will utilize all of the available hardware to accelerate simulation.